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The continuous-time random walk of Montrol! and Weiss has a complete 
separation of time (how long a walker will remain at a site) and space (how 
far a walker will jump when it leaves a site). The time part is completely 
described by a pausing time distribution q~(t). This paper relates the asymp- 
totic time behavior of the probability of being at site l at time t to the 
asymptotic behavior of ~b(t). Two classes of behavior are discussed in detail. 
The first is the familiar Gaussian diffusion packet which occurs, in general, 
when at least the first two moments of ~(t) exist; the other occurs when ~b(t) 
falls off so slowly that all of its moments are infinite. Other types of possible 
behavior are mentioned. The relationship of this work to solutions of a 
generalized master equation and to transient photocurrents in certain 
amorphous semiconductors and organic materials is discussed. 

KEY WORDS: Random walks; non-Markovian; Tauberian theorems; 
stable (L~vy) distributions; generalized master equations; transport theory. 

1, I N T R O D U C T I O N  

T h e  c o n t i n u o u s - t i m e  r a n d o m  la t t ice  w a l k  ( C T R W )  o f  M o n t r o l l  a n d  Weiss  (1-8~ 
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occurring at random time intervals. We will assume that the random step 
lengths have a finite mean and variance. Independently of the step length, one 
introduces a pausing time distribution ~b(t) to describe the random times 
when the walker hops. The probability that a walker jumps off of a site l that 
it reached at t = 0 in the time interval (t, t + dt)  is ~b(t) dr. The probability 
~b(t) is normalized to unity so the walker must eventually jump. 

The purpose of this paper is to describe the asymptotic time behavior of 
the CTRW by investigating the asymptotic behavior of the pausing time 
distribution. This work was motivated by the papers of Montroll and 
Scher, (2,8~ where several random walks are solved analytically for carefully 
chosen ~b(t). We will find that the familiar Gaussian diffusion limit is not 
always obtained, even when the random step lengths are finite. Another very 
different type of behavior arises when the first and therefore all moments of 
~b(t) are infinite. This new type of behavior has been found useful for modeling 
transient photocurrents in certain amorphous materials. (8~ 

The main mathematical tool in investigating the asymptotic behavior of 
the CTRW will be a Tauberian theorem of Hardy and Litttewood (see Ref. 9) 
that has been generalized by Kar~mata (see Ref. 11), and will be used in the 
following form: 

if f(t*) "~ Ix-CA(I//*) as/~--+ 0, with k > 0 (la) 

then g(t)  ,.~ t~-~A( t ) /P(k)  as t - - - ~  (lb) 

where s = f(t*), s is the Laplace transform, and A is a slowly varying 
function, i.e., for fixed ;~ > 0, A()ty)/A(y) ~ A()t/y)/A(1/y) ~ 1 as y - +  oo. 
From now on we will use the symbol ~ to mean ei ther/ ,  -+ 0 or t --> oo. 

In Sections 2 and 3 we calculate the mean and dispersion of the random 
walker on an infinite periodic lattice, and then discuss some lattice statistics 
in Section 4. Section 5 adds an absorbing boundary, and Section 6 relates 
this work to solutions of a generalized master equation and to transient 
photocurrents in certain amorphous materials. 

2. T H E  M E A N  

We begin our discussion of the CTRW with an equation that includes 
several of the important stochastic functions of random walk theory on a 
lattice. It can be shown ~m that 

y(k, t) = ~ P(I, t) e x p ( - i l . k )  
1 

= ~-1( [1  - ~*(~)10,[1 - a(k)~*(t,)]}-*) (2) 

where PO, t) is the probability of a walker being at site 1 at time t, ~b*(/,) is 
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the Laplace transform of ~b(t), ~ - 1  is the inverse Laplace transform, and 

•(k) - ~ p(l) e x p ( -  i l .k)  (3) 
1 

and is called the structure function of  the lattice. The probability that when a 
jump occurs it is of length and direction I is p(l). 

By differentiating (2) the moments of P(l, t) can be found (~,!~ 

aT(k, t) 
( t ( t ) }  -- ~ lPq,  t) = i ~ ,~=o 

1 

aT(k, t) da(k) k=o 
= i ~ a = l  dk 

= l ~  ~=1 (4) 

where l" = El Pp(l). 
Using (2), we have 

1 

r (5) = / L - 1  t~[1 - ,/,*(~)1 

For convenience, we have limited our discussion to one dimension, since 
higher dimensionality will only affect the spatial scaling factor i. However, 
the dimensionality will have a dramatic effect when we calculate lattice 
statistics. Note that no nearest-neighbor steps or similar approximation is 

used. We will only assume that i and ~ are finite. 
The large-time behavior of  ~b(t) is determined by the small-/z dependence 

of ~b*(/z). So we ,see from (5) that to investigate the asymptotic behavior of  
</(t)), we must study the small-/z dependence of ~b*(t~). We will study, in 
detail, two classes of  behavior of ~b(t) because of their physical significance. 
Other classes of behavior will be mentioned at the end of Section 3 and in 
Appendix A. 

We will first study the case when the first two moments, f and t 2, of ~b(t) 
are finite, where 

L 
om 

t "  - x"r  d x  

2 The random walk is usually studied on a finite lattice with periodic boundary conditions. 
The wave number k is inversely proportional to the number of lattice sites. So setting 
k = 0 in Eq. (4) ensures we are working on an infinite lattice. 
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I t  is shown in Appendix  A that  when i and t 2 are finite then 

~b*(/z) ~ 1 - t~  + 1t,2t2 (6a) 

The  second case we will discuss is when i is infinite and ~b(t),., 
[ t l+"F(1 - a)A(t)] -1, for  0 < c~ < 1, and thus <11~ 

~b*(tQ ... 1 - t~"/A(1/lz) (6b) 

where A is the slowly varying funct ion defined in (1). For  simplicity we can 
let A ( t )  = A(1//z) = const, and still discuss when [ is infinite the cases when 
~b(t) falls off algebraically at long times. The  in t roduct ion of  the slowly 
varying funct ion A allows one to include such cases as ~b(t) ~ (t 1 +" In t ) -1 ,  
or  ln(ln t ) / t  1+~, etc. The  asympto t ic  behavior  of  ~b(t) in (6b) is the same as 
for  a subset o f  a class of  probabil i t ies  called stable (L6vy) distributions. We 
will see that  this second class of  behavior  of  the ~b(t) distr ibution with the 
long tail leads to a new type of  behavior  for  a r a n d o m  walk with applicat ions 
to t ranspor t  in certain a m o r p h o u s  materials.  

So the small-/,  behavior  of  ~b*(tz) that  we are considering falls into two 
classes depending on whether  t~ is finite, hence splitting the asymptot ic  
behavior  of  the moment s  of  P(/ ,  t) into two classes. To  calculate the mean  of  
P(I ,  t) ,  we use (1), (5), and (6) and  first let ~b*(tx) ~ 1 - /d  + �89 2, 

f ( t 0  = ~b*(~)/t,[1 - ~b*(~)] and [g(t)  = ( l ( t ) )  

Then  one has 

and  thus 

f ~ )  ~ (1 - /x / ) ( /x2i  - �89 

~ ( ~ 2 i ) - 1  + ( ~ 0 - 1 [ ( � 8 9  - 51 

<l( t ) )  ~ (] / i ) t  + l( �89 2 - 1) ~ ( l / l ) t  (7) 

A second type of  behavior  for  the mean  is found when ~b*(/~) ~ 1 - 
tz~/A(1/l~), 0 < a < 1. Then 

f ( f f )  ,-~ [1 - ~/A(Ix- 1)] / [ /z l  + ~/A(~- 1)1 ,,, [if1 + "/A(~- 1)] - 1  

thus 
<l(t)> ~ [i/F(a + 1)] t "A( t )  (8) 

3 .  T H E  D I S P E R S I O N  

The dispersion is given by 

~ ( t )  - [ ( l ~ ( t ) )  - ( l ( t ) ) 2 ]  lj~ 

I t  can be shown <2~ that  

77 aTl -2 ~27 87 2 
(9)  
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Using (2) in (9), we obtain 

cr2(t) = l-~L-~ ~'*(t~) + 12L_~ 2~b'2(/*) 
~ [ 1  - ~b*(/~)]  /~[1  - ~b*(/~)]  2 

~*(~) .'~2 (I0) 12(L-~'~[ 1 _ ~*(~)]J 

As we saw in the calculation of  the mean, it is only the behavior of ~b*(/z) 
for small/z that will determine the moments of  P(/, t) at large times. We will 
again consider the two cases for which we calculated the mean. The first is 
where the first two moments of ~b(t) exist, and the second is where ~(t) falls 
off so slowly that no moments exist. 

First consider ~b*(/~) ~ 1 - fd + �89 After applying (1) in Eq. (10), 
we find 

~2 ,,~ 12[(t/O + (�89 _ 11 

+ l~{[2t2/~r(3)] + (4t/i)[(�89 ~) - 1]} 

- i ~ { ( t 2 / l ~ ) ~ +  (2t/~)[( �89162 ~) - 1]} 
and thus 

~(t) ~ { (P /0  + (212/O[(�89 2) - 1]}1/2t~/2 (11) 

Note that for ~b*(/~) ~ 1 - t d  + �89 one obtains asymptotically a 
diffusion packet moving with a constant velocity d(l(t)) /dt  and spreading 
as t 1/2 whether or not a bias is present. 

For  the second case, when ~b*(/0 ~ 1 - t,~/A(1/tL), 0 < ~ < 1, then 

a2(t) 12t~A(t) 12[ 2t2~ t2~ ] 
F(1 + cr + LF(f ~ ]2c 0 F2(1 + cr 

Thus 

~(t) ~ fi([2/P(1 + 2~)] - F-2(1 + ~)}l/2t~A(t) if ] # 0 (12a) 

([F~/P(1 + ~)]l/2t~'2A~r2(t) if  l = 0 (126) 

For  this class of ~b*(/,), with l r 0, one obtains an unusual type of trans- 
port  where the dispersion grows as quickly as the mean. We will discuss the 
applications of this in Section 6, but first we will discuss another possible 
type of behavior of the CTRW, some lattice statistics, and then introduce an 
absorbing boundary to our random walk. 

A case we have not yet discussed is when f is finite, but ~ is infinite and 
~b(t) decays as [t2+~A(t)]-L Now ~b*(t 0 ~ 1 - td + const • t~+~/A(t~-~). 
We now find, using the same type of analysis as before, that 

( l ( t ) )  ~ (i/Ot + const • t~-~/i2A(t) 

~2(t) ,,~ ~(t/ i)  + const • i2t2-~/UA(t) 
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When 1 = 0 we recover the same asymptotic behavior as when all the 
moments of ~b(t) exist. We will reserve the special cases ~b(t) .,~ t -2 and t -a 
for Appendix A. 

4. LATTICE S T A T I S T I C S  

Let S( t )  be the average number of distinct lattice sites visited after a 
time t. Montroll and Weiss (1~ have shown that 

~ ( S ( t ) )  = ~*(~)/~[1 - ~b*(t~)le(0, ~b*(~)) (13) 

where P(O, z) =- ~ =  o P,(O)z ~, and p,(0) is the probability of returning to the 
origin after n steps. They further show in one, two, and three dimensions, 
respectively, for a symmetric (i = 0) random walk with nearest-neighbor 
steps that 

P(0, z) = (1 - z2) -~/2 (1D) (14a) 

P(0, z) ,-~ -~r -a log(1 - z) (2D) (14b) 

(3D) (14c) P(O,z ) , .~P(O, I . )  as z - + l  

Then assuming i is finite, and using (1), they find 

S( t )  ~ (8t/~l) 1/2 (1O) 

S( t )  ,~ t/fP(O, 1) (3D) 

(15a) 

(15b) 

The Tauberian theorem (1) can be used with A(1/tz) = 7r/~ log(1/t~) to give 

S( t )  ,,~ ~r(tfl)/log(t/f) (2D) (15c) 

For  our case when T is infinite, and 4J*(/x) ~ 1 - tz"/A(l~-1) 

S ( t )  ~ t~/2A1/Z(t)/F(1 + ~/2) (1D) (16a) 

S( t )  ~ rrUA(t)/{F(1 + ~) log[t"A(t)]} (2D) (16b) 

S( t )  ~ t~A(t)/P(O, 1)r(1 + ~) for 0 < c~ < 1 (3D) (16c) 

As expected, when the mean pausing time is infinite a fewer number of 
sites are visited in a time t than if f were finite. However, the important fact 
to realize is that transport can still take place when the meanpausing time 
is infinite. Since the probability ~b(t) is normalized to unity, a finite median 
time to jump exists. So there is a probability of �89 that the walker has jumped 
by the median time, even though the mean pausing time is infinite. 

5. A B S O R B I N G  B O U N D A R Y  

We define a mean current I ( t )  by 

I ( t )  ~ d l ( ( t ) ) /d t  (17a) 
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and current fluctuations AI(t) by 

AI(t) = da( t ) /d t  (17b) 

When i is finite and i # 0 we easily find that the mean current is constant 
and the current fluctuations decay as t-1/2. When Z is infinite and ~b(t) 
t -1-~ both the mean current and its fluctuations decay as t -  1 + 

In this section we calculate how a biased current of random walkers is 
modified by the presence of an absorbing boundary, assuming there is a 
positive bias for jumping toward the boundary. The equation for a CTRW 
with an absorbing boundary at lattice site N when a walker is initially at the 
origin is (~ 

P(1, t )  = Po(l, t )  - d r  F ( N ,  r)Po(l  - N ,  t - r) (18) 

where the subscript on P denotes the probability in the absence of a boundary, 
and F ( N ,  r) is the probability of reaching site N for the first time at time r. 
The second term on the right subtracts all the paths that reach l by passing 
through the boundary. Multiplying both sides of  (18) by l - N and summing 
over all l yields 

f; ( l ( t ) )  = ( l ( t ) ) o  -- d r  F ( N ,  r ) ( l ( t  - r))  0 (19) 

Before the walkers start to reach the boundary the first passage time 
probability distribution F ( N ,  r) is near zero, and thus ( l ( t ) )  is nearly the 
same as without the boundary. Now let us wait a long enough time for F to 
become important and calculate how the boundary affects the current. This 
is most readily done by working with the Laplace transform of (19), which is 

(/*(tz)) = (/*(/~))0[1 - F*(N,/z)] (20) 

and then using the Tauberian theorem (1). 
We will discuss the effect of the boundary for two classes of ~b(t). For 

nearest-neighbor steps it is shown in Appendix B that when ~ and t 2 are finite 
and a bias is present 

F*(N,/z) ~ 1 -  a/z + btz 2 (21a) 

and when ~ is infinite and ~b(t) ,~ (t 1 +~)-1 

F * ( N ,  ix) ~ 1 - alz" + btz 2~ (21b) 

where a, b > 0. It is hypothesized that a more general class of jumps will not 
affect the small-tz behavior of F*. A study of the asymptotic time behavior 
of F ( N ,  t )  for various ~b(t) can be found in Appendix B. 

When i and t 2 are finite we know from (7) that (l*(/~))0 ~ t ~-2, and 
when i is infinite we know from (8) that (l*(/0)0 "~ ~-1 -~. Let us use this, 
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(20), and (21a) to consider the case when i and ~ are finite. We find ( /*( t0)  ~ 
const/t~, which leads to ( l ( t ) )  N const and a mean current I ( t )  ~ 0. As 
expected, eventually all the walkers in this Gaussian diffusion packet, which 
is initially moving toward the boundary with a constant velocity, are absorbed. 

For  the case when i is infinite we can find that the initial mean current 
behavior of  I ( t )  ~ it -~+~ changes to I ( t )  ~ it  - ~ - ~ .  Note that when ~ is 
infinite the mean current eventually goes to zero as t -~ +~ even when no 
absorbing boundary is present! 

6. D I S C U S S I O N  A N D  A P P L I C A T I O N S  

One can continue to find the higher moments and get a complete 
asymptotic description of P(I, t) in terms of its moments. I f  one chooses 
~b(t) = Ae -xt for, say, a three-dimensional random walk biased in the x 
direction, then P(I, t) can be solved for exactly. (2~ In the continuum limit 
it is a three-dimensional Gaussian diffusion probability distribution whose 
peak travels with a constant mean velocity in the x direction and diffuses in 
all directions, i.e., 

P(I, t) = (4~rDt) -a/2 e x p [ - ( x  - v t )  2 - y2 _ z 2 / 4 D t ]  (22a) 

where D is appropriately chosen, and 

( I x ( t ) )  ~ t, ( l ~ ( t ) )  = ( l z ( t ) )  = 0 (22b) 

cr,~(t) = ~ ( t )  = ~z(t) ~ t 1/2 (22e) 

This is exactly the asymptotic behavior we find when the first two moments 
of  ~b(t) exist. 

This Gaussian behavior breaks down when ~ is infinite. Then, even 
though the mean increases as t ~ there will at long times still be a considerable 
probability that the walker is on its original site. Once a walker reaches any 
site it will have a considerable probability for remaining there a very long 
time. This gives rise to a long dispersive tail in the probability and in the 
mean current. In a sense, this long tail represents the memory of the CTRW. 
The absence of this long tail in the Gaussian distribution implies that asymp- 
totically the random walker loses the memory of where it has been and the 
process becomes Markovian. 

Another way to discuss the memory of the CTRW is to relate it to the 
memory ~(t) of  a generalized master equation (GME). It  has been shown by 
Kenkre et  at. ~ that the CTRW, which is in general non-Markovian,  is 
equivalent to the G M E  

J2 dP( l ,  t ) / d t  = O(t - ~-)[-P(/, r)  + ~ p ( l  -- l ' ) P ( l ' ,  T)] d r  (23a) 
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when 
q~*(/z) =/x~b*(/z)/[1 - ~b*@)] (23b) 

When (23b) is used the GME can be rewritten as 

f2 e ( t ,  t )  = p ( t  - t ' ) P ( l ' ,  t - d ,  

So we have actually analyzed the asymptotic time behavior of these transport 
equations. It can also be easily shown(a'4~ that if ~b(t) = le-zt,  or equivalently 
~b(t) = 3(t), then the GME corresponding to the CTRW reduces to the 
Markovian master equation. Therefore the preceding analysis shows that if 
~b(t) has at least two finite moments then as t---> oo the Markovian master 
equation will be a valid description of the CTRW. This generalizes the proof  
of  Bedeaux et aL, (a~ which states that when all the moments of ~b(t) exist the 
Markovian master equation will asymptotically be a valid description of the 
CTRW: Of course, for short t~mes the behavior of the non-Markovian 
CTRW may be quite different from that predicted by the Markovian master 
equation. 

We have seen that when l = 0 only the existence of the first moment of 
~b(t) is necessary to obtain Gaussian behavior asymptotically. A similar 
statement is made by Lakatos-Lindenberg and Bedeaux, (v~ who show that 
the linear response from equilibrium, i.e., i = 0, of a random walker on a 
lattice to forces which vary with frequency oJ << 1/i is the same as for the 
walker obeying a Markovian master equation. 

In discussion renewal processes with nonexponential pausing times 
Feller (11~ states, " I t  is hard to find practical examples besides the bus running 
without schedule along a circular route." We will now discuss a practical 
example where the pausing time ~b(t) is not only nonexponential, but behaves 
as a stable distribution which does not even have a finite mean[ 

In transient photoconductivity experiments (8~ in the amorphous semi- 
conductor As2Sea holes are injected near a positive electrode. The holes are 
then transported to a negative electrode where they are absorbed and the 
current they generate is measured. Experimentally, it is found that the holes 
do not move as a well-defined packet, but rather as a disturbance whose 
fluctuations grow as quickly as its mean. Furthermore, the current initially 
goes as t - l+~  and then changes its behavior to t - l - ~ .  For  amorphous 
As2Sea, u -~ 0.5, and for similar experiments with the organic compound 
TNF-PVK,  c~ _~ 0.8. (8~ This is just the type of transport we have discussed 
for the CTRW when ~b(t) has no finite moments and decays as t -~-~.  So we 
assume that the CTRW describes the hopping motion of  charges between 
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spatially random localized sites which act as deep traps. The randomization 
of the localized sites leads to a distribution of pausing times between jumps 
which we have described by r Tunaley (15~ has discussed the natural 
appearance of infinite mean pausing times in certain amorphous systems. 

That this type of transport could be described by the CTRW was first 
shown by Montroll and Scher. ~2'a~ They obtained analytic expressions for the 
first two moments of P(/, t) for a carefully chosen ~b(t) that decays as t-3/2, 
to describe the transient photocurrents in amorphous As2S%. Diagrams of 
P(l, t), for different r and the currents involved can also be found in their 
work. 

Since all the moments of r are infinite, it appears that the Markovian 
master equation cannot describe the hopping transport of charge carriers 
between the deep traps in certain amorphous materials. Only the GME 
description will suffice. 

It is the r that asymptotically behave as stable distributions that lead 
to the new interesting behavior of the CTRW. Gnedenko and Kolmogorov(18~ 
have remarked concerning stable distributions that, " I t  is probable that the 
scope of applied problems in which they play an essential role will become in 
due course rather wide." 

A P P E N D I X  A 

We now study the small-t~ behavior of r which is determined by the 
large-time behavior of its inverse Laplace transform ~b(t). First, let us assume 

all the moments t" of r exist. Then 

~b*(t~) --- e-"~r dt 

fo jo = r  d t  - 

(A.1) 

t"4,(t)dt +...  t~b(t) dt + . . .+  --~(-. Jo 

---- 1 -- /xi + (higher orders of t~) (A.2) 

We now show that this small-~ behavior holds even when only ~ is finite. 
In general, 

fo (-- 1) ~ d~b*(l~)/dt~ ~ = e-~tt n~(t) dt r 0 (1.3) 

The finite mean time ~ is 

= -d~b*O)/dl~ (1.4) 

So ~b*(/~) = const - /~i + (higher orders of/Q. The constant is one, since ~b(t) 
is normalized. No lower orders of t~ are possible or else dr would 
diverge, yielding an infinite i, which would violate our assumption. 
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In  general, i f  the first n momen t s  o f  ~b(t) exist, then 

~b*(/~) = 1 - t d  + . . ' +  [(- /~)~/n!]f"  + (higher orders of/~) (A.5) 

N o w  let us consider the class o f  ~b(t) that  fall off  asymptot ical ly  as 
[tl+~I~(l - ~)A(t)] -1 as t--> oo, with 0 < ~ < 1. The  slowly varying func- 
t ion at infinity A( t )  was defined in (1) and  discussed in the text. This class o f  
pausing t ime distr ibutions fall off  so slowly at large t imes tha t  all the moment s  
o f  this class of  ~b(t) are infinite. A class of  probabil i t ies  with the same asymp-  
totic behavior  is a subset o f  the stable (L6vy) dis t r ibut ionsJ  11-~3) In general 
the stable distr ibutions are defined on the domain  ( - 0 %  oo) and are only 
known  in terms o f  their Four ier  t ransforms.  By choosing an  exponent  ~ for  
0 < ~ < 1 they are defined and  normal ized on (0, oo) and have the Laplace 
t rans form ~ ~ 

~c,~ = exp[ - l~ /A(1 / t~ ) ]  

So the small-/~ behavior  of  ~b*(t0 for  this class of  pausing t ime probabi l i ty  
funct ions is 

~b*(t 0 ~ 1 - t~"/A(1/tO ( A . 6 )  

As a specific example,  consider the Laplace t ransforms F,( t0,  which 
were discussed in Ref. 2, o f  repeated integrals o f  the compl imenta ry  error  
function,  where 

~b(t) = f~( t )  = c,a 2[exp(a~t)]i" Erfc(at  1/2) 

i s Erfc z = (2/Tr~Z2n!) (y  - z) ~ e x p ( - y  2) dy 

and c~, is a normal iz ing constant.  The  funct ion f2 ( t )  has no finite moment s  
since it falls off  as t -ai2 as t - +  o% and has the Laplace t ransform 

F ~ ( t z ) = ( S  1 /~+ 1) - 2 ~  1 - 2 S  ~/2 as S - + 0  

where S = tz/a ~, which is verified by (A.6). The  funct ion f4(t)  has one finite 
m o m e n t  s incef4( t )  ,-~ t -5/= as t --+ Go, and 

F4(/~) = (3S ~/2 + 1)(S ~/2 + 1) -a  ~ 1 - 3S as S - + 0  

which is verified by (A.5). 
When  i is infinite a case we have not  yet discussed is when ~b(t) ~ t -2 

The behavior  of  ~b*(/~) can be found  by analyzing the small-~ behavior  o f  

~ 1 + t 2 ~ 1 + ~ l n / L - , r  2(1-~') /~ 

where ~, = 0,577 is the Eu le r -Masche ron i  constant.  Using this fo rm of  ~*(~), 
we can find tha t  

( l ( t ) )  ,,~ l ( t / ln  t )  (A.7) 
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~2(t) ~ cons t  x f i ( t ] ln  t)  + cons t  x i2(t2/ln 4 t) (A.8) 

Finally,  we discuss the case w h e n  i is finite, ~ is infinite, an d  ~b(t) ~ t - z  
T h e n  ~b*(/z) ,.~ 1 - / d  + cons t  x /~2 In/~, and  we find 

</(t)> ~ it/i  

a n d  

o2(t) ~ (12t/i) + cons t  • i2(t In t ) /U 

(A.9) 

(A.10) 

A P P E N D I X  B 

We n o w  s tudy  the small-/~ behav io r  o f  F*(I , /z) .  I t  can  be shown  (1~ tha t  

F*(l,  i~) =- ~ ( F ( l ,  t)) = ~'(l ,  ~b*(/~)) - ~ f,(/)(~b*(/~))" (B.1) 

w h e r e f , ( / )  is the p robab i l i ty  o f  reaching  site l fo r  the first t ime at the n th  step. 
Feller (14~ shows tha t  in one  d imens ion  

~ ' ( U ,  s)  = [1 - (1 - 4pqs2)l12] N 
2 q s  ] (B.2) 

w h e n  the walker  starts at  the origin,  and  takes neares t -ne ighbor  steps to  the 
r ight  and  left wi th  probabi l i t ies  p a n d  q. 

As  shown  in A p p e n d i x  A,  when  ~b(t) ~ t - ~ - ~  then  q,*(t~) ~ 1 - e/z ~ + 

d/L 2~, and  when  i and  t -~ are  b o t h  finite then  ~b*(t,) ,-~ 1 - itz + �89 2. Set t ing 
s = r we have  s 2 ,-, 1 + cons t  x /z ~ + cons t  x /z 2~, where  ~ can  be 
chosen  to fit ei ther  o f  the cases discussed above,  an d  the cons tan t s  are  posit ive.  
Us ing  the above  in (B.2) when  p # q, we have  

~_lm(N~b.(/~)) ,,~ 1 - [1 - 4pq(1 - cons t  x /~  + cons t  x /z2~)] 1/2 2q (8.3) 

Let  X = 4pq(1 - cons t  x /z ~ + cons t  • /~2~); then  

X ~ ~ (4pq) ~ - n[(4pq)~(const x t~" - cons t  • /~2~)] 

E x p a n d i n g  the square  r o o t  in (B.3), we have  

1 1 X~ ~ X ~ 
(1 - X )  ~'2 = 1 - ~ X - ~  - z_~ 2 " ( n - - 1 ) ! t  

,~ (1 - 4pq) 112 + (convergent  series) 
(const  x /~" - cons t  x /~2.) 
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For  smal l /z  (B.3) becomes 

[ l  - -  ( 1  - -  4 p q )  1/2 - -  const  • /*" + const • /~2~]/2q 

_ 1 - (1 - 2q) const  x /*6 + const  • /.2, 
2q 

= 1 - const  x /*~ + const  x /.2~ (B.4) 

Finally, (B.4) retains the same small-/,  fo rm when raised to the Nth  power.  
Fur ther  interesting facts abou t  first passage t ime distr ibution can now 

be discussed. I t  is known (13'14~ for  a symmetr ic  (l -- 0) r andom lattice walk 
with nearest -neighbor  steps occurring at regular  intervals, i.e., ~b(t)= 
~(t - ~), that ,  asymptot ical ly,  the first passage t ime distr ibution to any lattice 
site is the stable distr ibution with ~ = �89 This is called the Smirnov distribu- 
tion, and is one of  three stable distr ibutions that  are known analytically. 
The  p r o b a b i l i t y f ( N ,  m) of  a first passage to N after m steps is 

f (N ,  m) ,,, [Nm-aI2/(2~r) 1/2] exp(-N2/2m)  as m --~ oo (B.5) 

Note  that  the mean  first passage t ime (number  of  steps) is infinite. 
We will now show that  the Smirnov  distr ibution appears  under  more  

general conditions.  Fo r  a symmetr ic  r a n d o m  walk, where the only other  

assumpt ion  is that  P is finite, Montro l l  and Weiss (~ have shown that  

o~(N, s)  ,-~ e x p { - N [ 2 ( 1  - s)]1/2/l 2} as s --+ 1 (B.6) 

By setting s = ~b*(/z) and  fur ther  assuming that  f is finite, we find f rom 
(B.6) tha t  

o~-(N, ~,b*(/*)) ,-~ 1 - N(2i/z)l/2/P (B.7) 

Using (B.1) and (A.6), we see that  asymptot ica l ly  F(l, t) has a Smirnov 

distr ibution in t ime for  a C T R W  when ] = 0, and ]5 and [ are finite. 
I f  a bias is present  and  neares t -neighbor  steps are taken,  we see f rom 

(B.4) that  F(N, t) will asymptot ica l ly  have a Smirnov distr ibution in t ime 
when ~b(t) does, and will have an a-stable dis tr ibut ion when ~b(t) does, for  
O < a < l .  
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